Formation Optimizing Large Models for Cost-Effective Fine-Tuning
L'optimisation des grands modèles pour un réglage fin est essentielle pour rendre les applications d'IA avancées réalisables et rentables. Ce cours se concentre sur les stratégies de réduction des coûts de calcul, y compris l'entraînement distribué, la quantification des modèles et l'optimisation du matériel, permettant aux participants de déployer et d'affiner les grands modèles de manière efficace.
Cette formation en direct (en ligne ou sur site), dirigée par un instructeur, s'adresse aux professionnels de niveau avancé qui souhaitent maîtriser les techniques d'optimisation des grands modèles pour une mise au point rentable dans des scénarios du monde réel.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les défis liés à la mise au point de grands modèles.
- Appliquer les techniques de formation distribuée aux grands modèles.
- Tirer parti de la quantification et de l'élagage des modèles pour plus d'efficacité.
- Optimiser l'utilisation du matériel pour les tâches de réglage fin.
- Déployer efficacement des modèles affinés dans des environnements de production.
Format du cours
- Exposé et discussion interactifs.
- Beaucoup d'exercices et de pratique.
- Mise en œuvre pratique dans un environnement de laboratoire réel.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter.
Plan du cours
Introduction à l'optimisation des grands modèles
- Aperçu des architectures de grands modèles
- Défis liés à la mise au point des grands modèles
- Importance d'une optimisation rentable
Techniques de formation distribuée
- Introduction au parallélisme des données et des modèles
- Cadres pour l'apprentissage distribué : PyTorch et TensorFlow
- Mise à l'échelle sur plusieurs GPU et nœuds
Quantification et élagage des modèles
- Comprendre les techniques de quantification
- Application de l'élagage pour réduire la taille du modèle
- Compromis entre précision et efficacité
Optimisation du matériel
- Choisir le bon matériel pour les tâches de réglage fin
- Optimisation de l'utilisation de GPU et de la TPU
- Utilisation d'accélérateurs spécialisés pour les modèles de grande taille
Efficacité Data Management
- Stratégies de gestion des grands ensembles de données
- Prétraitement et mise en lots pour améliorer les performances
- Techniques d'augmentation des données
Déploiement de modèles optimisés
- Techniques de déploiement de modèles finement ajustés
- Suivi et maintien des performances des modèles
- Exemples concrets de déploiement de modèles optimisés
Techniques d'optimisation avancées
- Exploration de l'adaptation de faible rang (LoRA)
- Utilisation d'adaptateurs pour un réglage fin modulaire
- Tendances futures en matière d'optimisation de modèles
Résumé et prochaines étapes
Pré requis
- Expérience avec des frameworks d'apprentissage profond comme PyTorch ou TensorFlow
- Familiarité avec les grands modèles de langage et leurs applications
- Compréhension des concepts de calcul distribué
Audience
- Ingénieurs en apprentissage automatique
- Spécialistes de l'IA en nuage
Les formations ouvertes requièrent plus de 3 participants.
Formation Optimizing Large Models for Cost-Effective Fine-Tuning - Booking
Formation Optimizing Large Models for Cost-Effective Fine-Tuning - Enquiry
Optimizing Large Models for Cost-Effective Fine-Tuning - Demande d'informations consulting
Demande d'informations consulting
Cours à venir
Cours Similaires
Advanced Techniques in Transfer Learning
14 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) est destinée aux professionnels de l'apprentissage automatique de niveau avancé qui souhaitent maîtriser les techniques de pointe de l'apprentissage par transfert et les appliquer à des problèmes complexes du monde réel.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les concepts et méthodologies avancés de l'apprentissage par transfert.
- Mettre en œuvre des techniques d'adaptation spécifiques à un domaine pour les modèles pré-entraînés.
- Appliquer l'apprentissage continu pour gérer des tâches et des ensembles de données en constante évolution.
- Maîtriser le réglage fin multi-tâches pour améliorer les performances des modèles à travers les tâches.
Deploying Fine-Tuned Models in Production
21 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur place) est destinée aux professionnels de niveau avancé qui souhaitent déployer des modèles affinés de manière fiable et efficace.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les défis liés au déploiement de modèles finement ajustés en production.
- Conteneuriser et déployer des modèles en utilisant des outils comme Docker et Kubernetes.
- Mettre en œuvre la surveillance et la journalisation pour les modèles déployés.
- Optimiser les modèles pour la latence et l'extensibilité dans des scénarios réels.
Domain-Specific Fine-Tuning for Finance
21 HeuresCette formation en direct avec instructeur à Belgique (en ligne ou sur place) est destinée aux professionnels de niveau intermédiaire qui souhaitent acquérir des compétences pratiques dans la personnalisation des modèles d'IA pour des tâches financières critiques.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les principes fondamentaux de la mise au point pour les applications financières.
- Exploiter des modèles pré-entraînés pour des tâches spécifiques au domaine de la finance.
- Appliquer des techniques de détection des fraudes, d'évaluation des risques et de génération de conseils financiers.
- Assurer la conformité avec les réglementations financières telles que GDPR et SOX.
- Mettre en œuvre la sécurité des données et les pratiques éthiques de l'IA dans les applications financières.
Fine-Tuning Models and Large Language Models (LLMs)
14 HeuresCette formation en direct avec instructeur dans Belgique (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire à avancé qui souhaitent personnaliser des modèles pré-entraînés pour des tâches et des ensembles de données spécifiques.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes du réglage fin et ses applications.
- Préparer des ensembles de données pour affiner les modèles pré-entraînés.
- Affiner les grands modèles de langage (LLM) pour les tâches de NLP.
- Optimiser les performances des modèles et relever les défis les plus courants.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HeuresCette formation en Belgique (en ligne ou sur site) s'adresse aux développeurs de niveau intermédiaire et aux praticiens de l'IA qui souhaitent mettre en œuvre des stratégies de réglage fin pour de grands modèles sans avoir besoin de ressources informatiques considérables.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes de l'adaptation de faible rang (LoRA).
- Mettre en œuvre la LoRA pour un réglage fin efficace des grands modèles.
- Optimiser le réglage fin pour les environnements à ressources limitées.
- Évaluer et déployer des modèles ajustés par LoRA pour des applications pratiques.
Fine-Tuning Multimodal Models
28 HeuresCette formation en direct dans Belgique (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent maîtriser la mise au point de modèles multimodaux pour des solutions innovantes en matière d'IA.
A l'issue de cette formation, les participants seront capables de :
- Comprendre l'architecture des modèles multimodaux tels que CLIP et Flamingo.
- Préparer et prétraiter efficacement des ensembles de données multimodales.
- Affiner les modèles multimodaux pour des tâches spécifiques.
- Optimiser les modèles pour des applications et des performances réelles.
Fine-Tuning for Natural Language Processing (NLP)
21 HeuresCette formation en Belgique (en ligne ou sur site) s'adresse aux professionnels de niveau intermédiaire qui souhaitent améliorer leurs projets NLP en affinant efficacement les modèles de langage pré-entraînés.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes fondamentaux de la mise au point pour les tâches de TAL.
- Affiner les modèles pré-entraînés tels que GPT, BERT, et T5 pour des applications NLP spécifiques.
- Optimiser les hyperparamètres pour améliorer les performances des modèles.
- Évaluer et déployer des modèles affinés dans des scénarios réels.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HeuresCette formation en Belgique (en ligne ou sur site) s'adresse aux chercheurs en IA de niveau avancé, aux ingénieurs en apprentissage automatique et aux développeurs qui souhaitent affiner les modèles DeepSeek LLM pour créer des applications d'IA spécialisées adaptées à des industries, des domaines ou des besoins commerciaux spécifiques.
A la fin de cette formation, les participants seront capables de :
- Comprendre l'architecture et les capacités des modèles DeepSeek, y compris DeepSeek-R1 et DeepSeek-V3.
- Préparer les ensembles de données et prétraiter les données pour le réglage fin.
- Affiner le DeepSeek LLM pour des applications spécifiques à un domaine.
- Optimiser et déployer efficacement les modèles affinés.
Prompt Engineering and Few-Shot Fine-Tuning
14 HeuresCette formation en direct avec instructeur dans Belgique (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire qui souhaitent tirer parti de la puissance de l'ingénierie rapide et de l'apprentissage à court terme afin d'optimiser les performances du LLM pour des applications du monde réel.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les principes de l'ingénierie des messages-guides et de l'apprentissage à court terme.
- Concevoir des messages-guides efficaces pour diverses tâches NLP.
- Tirer parti des techniques d'apprentissage à court terme pour adapter les LLM avec un minimum de données.
- Optimiser les performances des LLM pour des applications pratiques.
Introduction to Transfer Learning
14 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) s'adresse aux professionnels de l'apprentissage automatique de niveau débutant à intermédiaire qui souhaitent comprendre et appliquer les techniques d'apprentissage par transfert pour améliorer l'efficacité et la performance des projets d'IA.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les concepts fondamentaux et les avantages de l'apprentissage par transfert.
- Explorer les modèles pré-entraînés populaires et leurs applications.
- Effectuer un réglage fin des modèles pré-entraînés pour des tâches personnalisées.
- Appliquer l'apprentissage par transfert pour résoudre des problèmes réels en NLP et en vision par ordinateur.
Troubleshooting Fine-Tuning Challenges
14 HeuresCette formation en direct avec instructeur en Belgique (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent affiner leurs compétences en matière de diagnostic et de résolution des problèmes de réglage fin pour les modèles d'apprentissage automatique.
A l'issue de cette formation, les participants seront capables de :
- Diagnostiquer des problèmes tels que l'overfitting, l'underfitting et le déséquilibre des données.
- Mettre en œuvre des stratégies pour améliorer la convergence des modèles.
- Optimiser les pipelines de réglage fin pour de meilleures performances.
- Déboguer les processus de formation à l'aide d'outils et de techniques pratiques.