Data Vault: Building a Scalable Data Warehouse Training Course
Data Vault Modeling is a database modeling technique that provides long-term historical storage of data that originates from multiple sources. A data vault stores a single version of the facts, or "all the data, all the time". Its flexible, scalable, consistent and adaptable design encompasses the best aspects of 3rd normal form (3NF) and star schema.
In this instructor-led, live training, participants will learn how to build a Data Vault.
By the end of this training, participants will be able to:
- Understand the architecture and design concepts behind Data Vault 2.0, and its interaction with Big Data, NoSQL and AI.
- Use data vaulting techniques to enable auditing, tracing, and inspection of historical data in a data warehouse.
- Develop a consistent and repeatable ETL (Extract, Transform, Load) process.
- Build and deploy highly scalable and repeatable warehouses.
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Course Outline
Introduction
- The shortcomings of existing data warehouse data modeling architectures
- Benefits of Data Vault modeling
Overview of Data Vault architecture and design principles
- SEI / CMM / Compliance
Data Vault applications
- Dynamic Data Warehousing
- Exploration Warehousing
- In-Database Data Mining
- Rapid Linking of External Information
Data Vault components
- Hubs, Links, Satellites
Building a Data Vault
Modeling Hubs, Links and Satellites
Data Vault reference rules
How components interact with each other
Modeling and populating a Data Vault
Converting 3NF OLTP to a Data Vault Enterprise Data Warehouse (EDW)
Understanding load dates, end-dates, and join operations
Business keys, relationships, link tables and join techniques
Query techniques
Load processing and query processing
Overview of Matrix Methodology
Getting data into data entities
Loading Hub Entities
Loading Link Entities
Loading Satellites
Using SEI/CMM Level 5 templates to obtain repeatable, reliable, and quantifiable results
Developing a consistent and repeatable ETL (Extract, Transform, Load) process
Building and deploying highly scalable and repeatable warehouses
Closing remarks
Requirements
- An understanding of data warehousing concepts
- An understanding of database and data modeling concepts
Audience
- Data modelers
- Data warehousing specialist
- Business Intelligence specialists
- Data engineers
- Database administrators
Open Training Courses require 5+ participants.
Data Vault: Building a Scalable Data Warehouse Training Course - Booking
Data Vault: Building a Scalable Data Warehouse Training Course - Enquiry
Data Vault: Building a Scalable Data Warehouse - Consultancy Enquiry
Consultancy Enquiry
Testimonials (1)
how the trainor shows his knowledge in the subject he's teachign
john ernesto ii fernandez - Philippine AXA Life Insurance Corporation
Course - Data Vault: Building a Scalable Data Warehouse
Provisional Upcoming Courses (Contact Us For More Information)
Related Courses
Cluster Analysis with R and SAS
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at data analysts who wish to program with R in SAS for cluster analysis.
By the end of this training, participants will be able to:
- Use cluster analysis for data mining
- Master R syntax for clustering solutions.
- Implement hierarchical and non-hierarchical clustering.
- Make data-driven decisions to help to improve business operations.
From Data to Decision with Big Data and Predictive Analytics
21 HoursAudience
If you try to make sense out of the data you have access to or want to analyse unstructured data available on the net (like Twitter, Linked in, etc...) this course is for you.
It is mostly aimed at decision makers and people who need to choose what data is worth collecting and what is worth analyzing.
It is not aimed at people configuring the solution, those people will benefit from the big picture though.
Delivery Mode
During the course delegates will be presented with working examples of mostly open source technologies.
Short lectures will be followed by presentation and simple exercises by the participants
Content and Software used
All software used is updated each time the course is run, so we check the newest versions possible.
It covers the process from obtaining, formatting, processing and analysing the data, to explain how to automate decision making process with machine learning.
Data Mining and Analysis
28 HoursObjective:
Delegates be able to analyse big data sets, extract patterns, choose the right variable impacting the results so that a new model is forecasted with predictive results.
Data Mining
21 HoursCourse can be provided with any tools, including free open-source data mining software and applications
Data Mining with Python
14 HoursThis instructor-led, live training (online or onsite) is aimed at data analysts and data scientists who wish to implement more advanced data analytics techniques for data mining using Python.
By the end of this training, participants will be able to:
- Understand important areas of data mining, including association rule mining, text sentiment analysis, automatic text summarization, and data anomaly detection.
- Compare and implement various strategies for solving real-world data mining problems.
- Understand and interpret the results.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Data Visualization
28 HoursThis course is intended for engineers and decision makers working in data mining and knoweldge discovery.
You will learn how to create effective plots and ways to present and represent your data in a way that will appeal to the decision makers and help them to understand hidden information.
Data Mining with Excel
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at data scientists who wish to use Excel for data mining.
- By the end of this training, participants will be able to:
- Explore data with Excel to perform data mining and analysis.
- Use Microsoft algorithms for data mining.
- Understand concepts in Excel data mining.
Data Mining with Weka
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at beginner to intermediate-level data analysts and data scientists who wish to use Weka to perform data mining tasks.
By the end of this training, participants will be able to:
- Install and configure Weka.
- Understand the Weka environment and workbench.
- Perform data mining tasks using Weka.
Data Mining & Machine Learning with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Data Science for Big Data Analytics
35 HoursBig data is data sets that are so voluminous and complex that traditional data processing application software are inadequate to deal with them. Big data challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating and information privacy.
Foundation R
7 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at beginner-level professionals who wish to gain a mastery of the fundamentals of R and how to work with data.
By the end of this training, participants will be able to:
- Understand the R programming environment and RStudio interface.
- Import, manipulate, and explore datasets using R commands and packages.
- Perform basic statistical analysis and data summarization.
- Generate visualizations using both base R and ggplot2.
- Manage workspaces, scripts, and packages effectively.
KNIME Analytics Platform for BI
21 HoursKNIME Analytics Platform is a leading open source option for data-driven innovation, helping you discover the potential hidden in your data, mine for fresh insights, or predict new futures. With more than 1000 modules, hundreds of ready-to-run examples, a comprehensive range of integrated tools, and the widest choice of advanced algorithms available, KNIME Analytics Platform is the perfect toolbox for any data scientist and business analyst.
This course for KNIME Analytics Platform is an ideal opportunity for beginners, advanced users and KNIME experts to be introduced to KNIME, to learn how to use it more effectively, and how to create clear, comprehensive reports based on KNIME workflows
Platforma analityczna KNIME - szkolenie kompleksowe
35 HoursThe "Analytics Platform KNIME" training offers a comprehensive overview of this free data analytics platform. The program includes an introduction to data processing and analysis, installation and configuration KNIME, building workflow, methodology for creating business models and data modeling. The course also covers advanced data analysis tools, workflow import and export, tool integration, ETL processes, data mining, visualization, extensions and integrations with tools such as R, Java, Python, Gephi, Neo4j. The conclusion includes an overview of reporting, integration with BIRT and KNIME WebPortal.
Oracle SQL Intermediate - Data Extraction
14 HoursThe objective of the course is to enable participants to gain a mastery of how to work with the SQL language in Oracle database for data extraction at intermediate level.