Course Outline

Deep Learning vs Machine Learning vs Other Methods

  • When Deep Learning is suitable
  • Limits of Deep Learning
  • Comparing accuracy and cost of different methods

Methods Overview

  • Nets and  Layers
  • Forward / Backward: the essential computations of layered compositional models.
  • Loss: the task to be learned is defined by the loss.
  • Solver: the solver coordinates model optimization.
  • Layer Catalogue: the layer is the fundamental unit of modeling and computation
  • Convolution​

Methods and models

  • Backprop, modular models
  • Logsum module
  • RBF Net
  • MAP/MLE loss
  • Parameter Space Transforms
  • Convolutional Module
  • Gradient-Based Learning 
  • Energy for inference,
  • Objective for learning
  • PCA; NLL: 
  • Latent Variable Models
  • Probabilistic LVM
  • Loss Function
  • Detection with Fast R-CNN
  • Sequences with LSTMs and Vision + Language with LRCN
  • Pixelwise prediction with FCNs
  • Framework design and future

Tools

  • Caffe
  • Tensorflow
  • R
  • Matlab
  • Others...

Requirements

Any programming language knowledge is required. Familiarity with Machine Learning is not required but beneficial.

 21 Hours

Number of participants


Price per participant

Testimonials (2)

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories