Computer Vision with Python Training Course
Computer Vision is a field that involves automatically extracting, analyzing, and understanding useful information from digital media. Python is a high-level programming language famous for its clear syntax and code readibility.
In this instructor-led, live training, participants will learn the basics of Computer Vision as they step through the creation of set of simple Computer Vision application using Python.
By the end of this training, participants will be able to:
- Understand the basics of Computer Vision
- Use Python to implement Computer Vision tasks
- Build their own face, object, and motion detection systems
Audience
- Python programmers interested in Computer Vision
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Course Outline
Introduction
Understanding Computer Vision Basics
Installing OpenCV with Python Wrappers
Introduction to Using OpenCV
Using Media with Python
- Loading Images
- Converting Color to Grayscale
- Using Metadata
Applying Image Theory with Python
- Understanding Images as Multidimensional Arrays
- Understanding the Color Space
- Overview of Pixels and Coordinates
- Accessing Pixels
- Changing Pixels in Images
- Drawing Lines and Shapes
- Applying Text on Images
- Resizing Images
- Cropping Images
Exploring Common Computer Vision Algorithms and Methods
- Thresholding
- Finding Contours
- Background Subtraction
- Using Detectors
Implementing Feature Extraction with Python
- Using Feature Vectors
- Understanding the Color-mean Features Theory
- Extracting Histogram Features
- Extracting Grayscale Histogram Features
- Extracting Texture Features
Implementing an App to Detect Image Similarity
Implementing a Reverse Image Search Engine
Creating an Object Detection App Using Template Matching
Creating a Face Detection App Using Haar Cascade
Implementing an Object Detection App Using Keypoints
Capturing and Processing Video through a WebCam
Creating a Motion Detection System
Troubleshooting
Summary and Conclusion
Requirements
- Programming experience with Python
Open Training Courses require 5+ participants.
Computer Vision with Python Training Course - Booking
Computer Vision with Python Training Course - Enquiry
Computer Vision with Python - Consultancy Enquiry
Consultancy Enquiry
Testimonials (1)
Trainer was very knowlegable and very open to feedback on what pace to go through the content and the topics we covered. I gained alot from the training and feel like I now have a good grasp of image manipulation and some techniques for building a good training set for an image classification problem.
Anthea King - WesCEF
Course - Computer Vision with Python
Provisional Upcoming Courses (Contact Us For More Information)
Related Courses
Scaling Data Analysis with Python and Dask
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at data scientists and software engineers who wish to use Dask with the Python ecosystem to build, scale, and analyze large datasets.
By the end of this training, participants will be able to:
- Set up the environment to start building big data processing with Dask and Python.
- Explore the features, libraries, tools, and APIs available in Dask.
- Understand how Dask accelerates parallel computing in Python.
- Learn how to scale the Python ecosystem (Numpy, SciPy, and Pandas) using Dask.
- Optimize the Dask environment to maintain high performance in handling large datasets.
Data Analysis with Python, Pandas and Numpy
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at intermediate-level Python developers and data analysts who wish to enhance their skills in data analysis and manipulation using Pandas and NumPy.
By the end of this training, participants will be able to:
- Set up a development environment that includes Python, Pandas, and NumPy.
- Create a data analysis application using Pandas and NumPy.
- Perform advanced data wrangling, sorting, and filtering operations.
- Conduct aggregate operations and analyze time series data.
- Visualize data using Matplotlib and other visualization libraries.
- Debug and optimize their data analysis code.
AI Facial Recognition Development for Law Enforcement
21 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at beginner-level law enforcement personnel who wish to transition from manual facial sketching to using AI tools for developing facial recognition systems.
By the end of this training, participants will be able to:
- Understand the fundamentals of Artificial Intelligence and Machine Learning.
- Learn the basics of digital image processing and its application in facial recognition.
- Develop skills in using AI tools and frameworks to create facial recognition models.
- Gain hands-on experience in creating, training, and testing facial recognition systems.
- Understand ethical considerations and best practices in the use of facial recognition technology.
Fiji: Introduction to Scientific Image Processing
21 HoursFiji is an open-source image processing package that bundles ImageJ (an image processing program for scientific multidimensional images) and a number of plugins for scientific image analysis.
In this instructor-led, live training, participants will learn how to use the Fiji distribution and its underlying ImageJ program to create an image analysis application.
By the end of this training, participants will be able to:
- Use Fiji's advanced programming features and software components to extend ImageJ
- Stitch large 3d images from overlapping tiles
- Automatically update a Fiji installation on startup using the integrated update system
- Select from a broad selection of scripting languages to build custom image analysis solutions
- Use Fiji's powerful libraries, such as ImgLib on large bioimage datasets
- Deploy their application and collaborate with other scientists on similar projects
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Fiji: Image Processing for Biotechnology and Toxicology
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at beginner-level to intermediate-level researchers and laboratory professionals who wish to process and analyze images related to histological tissues, blood cells, algae, and other biological samples.
By the end of this training, participants will be able to:
- Navigate the Fiji interface and utilize ImageJ’s core functions.
- Preprocess and enhance scientific images for better analysis.
- Analyze images quantitatively, including cell counting and area measurement.
- Automate repetitive tasks using macros and plugins.
- Customize workflows for specific image analysis needs in biological research.
Accelerating Python Pandas Workflows with Modin
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at data scientists and developers who wish to use Modin to build and implement parallel computations with Pandas for faster data analysis.
By the end of this training, participants will be able to:
- Set up the necessary environment to start developing Pandas workflows at scale with Modin.
- Understand the features, architecture, and advantages of Modin.
- Know the differences between Modin, Dask, and Ray.
- Perform Pandas operations faster with Modin.
- Implement the entire Pandas API and functions.
Computer Vision with OpenCV
28 HoursOpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-licensed library that includes several hundreds of computer vision algorithms.
Audience
This course is directed at engineers and architects seeking to utilize OpenCV for computer vision projects
Python and Deep Learning with OpenCV 4
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.
By the end of this training, participants will be able to:
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
OpenFace: Creating Facial Recognition Systems
14 HoursOpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.
In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.
By the end of this training, participants will be able to:
- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Pattern Matching
14 HoursPattern Matching is a technique used to locate specified patterns within an image. It can be used to determine the existence of specified characteristics within a captured image, for example the expected label on a defective product in a factory line or the specified dimensions of a component. It is different from "Pattern Recognition" (which recognizes general patterns based on larger collections of related samples) in that it specifically dictates what we are looking for, then tells us whether the expected pattern exists or not.
Format of the Course
- This course introduces the approaches, technologies and algorithms used in the field of pattern matching as it applies to Machine Vision.
Raspberry Pi + OpenCV for Facial Recognition
21 HoursThis instructor-led, live training introduces the software, hardware, and step-by-step process needed to build a facial recognition system from scratch. Facial Recognition is also known as Face Recognition.
The hardware used in this lab includes Rasberry Pi, a camera module, servos (optional), etc. Participants are responsible for purchasing these components themselves. The software used includes OpenCV, Linux, Python, etc.
By the end of this training, participants will be able to:
- Install Linux, OpenCV and other software utilities and libraries on a Rasberry Pi.
- Configure OpenCV to capture and detect facial images.
- Understand the various options for packaging a Rasberry Pi system for use in real-world environments.
- Adapt the system for a variety of use cases, including surveillance, identity verification, etc.
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- Other hardware and software options include: Arduino, OpenFace, Windows, etc. If you wish to use any of these, please contact us to arrange.
Scilab
14 HoursScilab is a well-developed, free, and open-source high-level language for scientific data manipulation. Used for statistics, graphics and animation, simulation, signal processing, physics, optimization, and more, its central data structure is the matrix, simplifying many types of problems compared to alternatives such as FORTRAN and C derivatives. It is compatible with languages such as C, Java, and Python, making it suitable as for use as a supplement to existing systems.
In this instructor-led training, participants will learn the advantages of Scilab compared to alternatives like Matlab, the basics of the Scilab syntax as well as some advanced functions, and interface with other widely used languages, depending on demand. The course will conclude with a brief project focusing on image processing.
By the end of this training, participants will have a grasp of the basic functions and some advanced functions of Scilab, and have the resources to continue expanding their knowledge.
Audience
- Data scientists and engineers, especially with interest in image processing and facial recognition
Format of the course
- Part lecture, part discussion, exercises and intensive hands-on practice, with a final project
Vision Builder for Automated Inspection
35 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at intermediate-level professionals who wish to use Vision Builder AI to design, implement, and optimize automated inspection systems for SMT (Surface-Mount Technology) processes.
By the end of this training, participants will be able to:
- Set up and configure automated inspections using Vision Builder AI.
- Acquire and preprocess high-quality images for analysis.
- Implement logic-based decisions for defect detection and process validation.
- Generate inspection reports and optimize system performance.