Text Summarization with Python Training Course
In Python Machine Learning, the Text Summarization feature is able to read the input text and produce a text summary. This capability is available from the command-line or as a Python API/Library. One exciting application is the rapid creation of executive summaries; this is particularly useful for organizations that need to review large bodies of text data before generating reports and presentations.
In this instructor-led, live training, participants will learn to use Python to create a simple application that auto-generates a summary of input text.
By the end of this training, participants will be able to:
- Use a command-line tool that summarizes text.
- Design and create Text Summarization code using Python libraries.
- Evaluate three Python summarization libraries: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17
Audience
- Developers
- Data Scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Course Outline
Introduction to Text Summarization with Python
- Comparing sample text with auto-generated summaries
- Installing sumy (a Python Command-Line Executable for Text Summarization)
- Using sumy as a Command-Line Text Summarization Utility (Hands-On Exercise)
Evaluating three Python summarization libraries: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17 based on documented features
Choosing a library: sumy, pysummarization or readless
Creating a Python application using sumy library on Python 2.7/3.3+
- Installing the sumy library for Text Summarization
- Using the Edmundson (Extraction) method in sumy Python Library for Text
Summarization
- Creating simple Python test code that uses sumy library to generate a text summary
Creating a Python application using pysummarization library on Python 2.7/3.3+
- Installing pysummarization library for Text Summarization
- Using the pysummarization library for Text Summarization
- Creating simple Python test code that uses pysummarization library to generate a text summary
Creating a Python application using readless library on Python 2.7/3.3+
- Installing readless library for Text Summarization
- Using the readless library for Text Summarization
Creating simple Python test code that uses readless library to generate a text summary
Troubleshooting and debugging
Closing Remarks
Requirements
- An understanding of Python programming (Python 2.7/3.3+)
- An understanding of Python libraries in general
Open Training Courses require 5+ participants.
Text Summarization with Python Training Course - Booking
Text Summarization with Python Training Course - Enquiry
Text Summarization with Python - Consultancy Enquiry
Consultancy Enquiry
Testimonials (5)
The fact of having more practical exercises using more similar data to what we use in our projects (satellite images in raster format)
Matthieu - CS Group
Course - Scaling Data Analysis with Python and Dask
Very good preparation and expertise of a trainer, perfect communication in English. The course was practical (exercises + sharing examples of use cases)
Monika - Procter & Gamble Polska Sp. z o.o.
Course - Developing APIs with Python and FastAPI
It was a though course as we had to cover a lot in a short time frame. Our trainer knew a lot about the subject and delivered the content to address our requirements. It was lots of content to learn but our trainer was helpful and encouraging. He answered all our questions with good detail and we feel that we learned a lot. Exercises were well prepared and tasks were tailored accordingly to our needs. I enjoyed this course
Bozena Stansfield - New College Durham
Course - Build REST APIs with Python and Flask
Trainer develops training based on participant's pace
Farris Chua
Course - Data Analysis in Python using Pandas and Numpy
I mostly enjoyed everything.
Thukten Dendup - Bhutan Telecom
Course - Web Development with Django
Provisional Upcoming Courses (Contact Us For More Information)
Related Courses
Scaling Data Analysis with Python and Dask
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at data scientists and software engineers who wish to use Dask with the Python ecosystem to build, scale, and analyze large datasets.
By the end of this training, participants will be able to:
- Set up the environment to start building big data processing with Dask and Python.
- Explore the features, libraries, tools, and APIs available in Dask.
- Understand how Dask accelerates parallel computing in Python.
- Learn how to scale the Python ecosystem (Numpy, SciPy, and Pandas) using Dask.
- Optimize the Dask environment to maintain high performance in handling large datasets.
Data Analysis with Python, Pandas and Numpy
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at intermediate-level Python developers and data analysts who wish to enhance their skills in data analysis and manipulation using Pandas and NumPy.
By the end of this training, participants will be able to:
- Set up a development environment that includes Python, Pandas, and NumPy.
- Create a data analysis application using Pandas and NumPy.
- Perform advanced data wrangling, sorting, and filtering operations.
- Conduct aggregate operations and analyze time series data.
- Visualize data using Matplotlib and other visualization libraries.
- Debug and optimize their data analysis code.
Web Development with Django
21 HoursDjango is a high-level Python Web framework that encourages rapid development and clean, pragmatic design.
Audience
This course is directed at developers and engineers seeking to incorporate Django in their projects
Monax: Build a Smart Contract Application
7 HoursIn this instructor-led, live training in Belgium, participants will learn how to build a smart contract blockchain application with Monax.
By the end of this training, participants will be able to:
- Develop and deploy a distributed application using blockchain and smart contract technology.
- Understand design and functionality of 'smart contracts' and how to create one.
- Implement best practices for secure blockchain application development.
- Leverage Monax tools to streamline distributed application development.
FARM (FastAPI, React, and MongoDB) Full Stack Development
14 HoursThis instructor-led, live training in (online or onsite) is aimed at developers who wish to use the FARM (FastAPI, React, and MongoDB) stack to build dynamic, high-performance, and scalable web applications.
By the end of this training, participants will be able to:
- Set up the necessary development environment that integrates FastAPI, React, and MongoDB.
- Understand the key concepts, features, and benefits of the FARM stack.
- Learn how to build REST APIs with FastAPI.
- Learn how to design interactive applications with React.
- Develop, test, and deploy applications (front end and back end) using the FARM stack.
Developing APIs with Python and FastAPI
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at developers who wish to use FastAPI with Python to build, test, and deploy RESTful APIs easier and faster.
By the end of this training, participants will be able to:
- Set up the necessary development environment to develop APIs with Python and FastAPI.
- Create APIs quicker and easier using the FastAPI library.
- Learn how to create data models and schemas based on Pydantic and OpenAPI.
- Connect APIs to a database using SQLAlchemy.
- Implement security and authentication in APIs using the FastAPI tools.
- Build container images and deploy web APIs to a cloud server.
Web application development with Flask
14 HoursThis practical course is addressed to Python developers that want to create and maintain their first web applications. It is also addressed to people who are already familiar with other web frameworks such as Django or Web2py, and want to learn how using a microframework (i.e. a framework which glues together third-party libraries instead of providing a self-contained universal solution) changes the process.
A significant part of the course is devoted not to Flask itself (it's tiny), but to third-party libraries and tools often used in Flask projects.
Advanced Flask
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at developers who wish to use the advanced features of Flask to build scalable web applications on top of MongoDB.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start developing web applications with Flask.
- Get to know the advanced concepts and techniques for real-world Flask projects.
- Build a RESTful API server on top of MongoDB.
- Learn how to containerize, test, and deploy microservices with Flask, Docker, and Amazon EC2.
- Gain some insights on the advanced Flask integrations for scaling web applications.
Kivy: Building Android Apps with Python
7 HoursKivy is an open-source cross-platform graphical user interface library written in Python, which allows multi-touch application development for a wide selection of devices.
In this instructor-led, live training participants will learn how to install and deploy Kivy on different platforms, customize and manipulate widgets, schedule, trigger and respond to events, modify graphics with multi-touching, resize the screen, package apps for Android, and more.
By the end of this training, participants will be able to
- Relate the Python code and the Kivy language.
- Have a solid understanding of how Kivy works and makes use of its most important elements such as, widgets, events, properties, graphics, etc.
- Seamlessly develop and deploy Android apps based on different business and design requirements.
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Accelerating Python Pandas Workflows with Modin
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at data scientists and developers who wish to use Modin to build and implement parallel computations with Pandas for faster data analysis.
By the end of this training, participants will be able to:
- Set up the necessary environment to start developing Pandas workflows at scale with Modin.
- Understand the features, architecture, and advantages of Modin.
- Know the differences between Modin, Dask, and Ray.
- Perform Pandas operations faster with Modin.
- Implement the entire Pandas API and functions.
Game Development with PyGame
7 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at developers who wish to use PyGame to create and build games using Python programming.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start creating game applications with PyGame and Python.
- Learn how to create interactive PyGame applications integrated with animations and multimedia features.
- Run and test game programs with PyGame test suite and convert them into executable files.
GUI Programming with Python and PyQt
21 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at persons who wish to program a visually attractive software application using Python and the Qt UI framework.
By the end of this training, participants will be able to:
- Set up a development environment that includes all needed libraries, packages and frameworks.
- Create a desktop or server application whose user interface functions smoothly and is visually appealing.
- Implement various UI elements and effects, including widgets, charts, layers, etc. to achieve maximum effect in usability.
- Implement good UI design and code organization during the design and development phase.
- Test and debug the application.
Build REST APIs with Python and Flask
14 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at backend developers who wish to build REST APIs with Python and Flask.
By the end of this training, participants will be able to:
- Implement a REST API to allow a Flask web application to read and write to a database in the backend.
- Develop advanced authentication features like refresh tokens.
- Build a reusable backend for future Python projects.
- Simplify storage of data with SQLAlchemy.
- Deploy REST APIs onto a cloud based server.
Scientific Computing with Python SciPy
7 HoursThis instructor-led, live training in Belgium (online or onsite) is aimed at developers who wish to use SciPy to create advanced scientific computing functions with Python.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start creating scientific computing functions.
- Get the full benefit of SciPy features by performing practical examples of complex operations.
- Implement and optimize mathematical algorithms and functions to solve scientific problems.
- Design data structures and interpolation methods for visualization, processing, and analysis.
Web Development with Web2Py
28 HoursWeb2py is a python based free open source full-stack framework for rapid development of fast, scalable, secure and portable database-driven web-based applications.
Audience
This course is directed at Engineers and Developers using web2py as a framework for web development