Plan du cours
- Backprop, modèles modulaires
- Module Logsum
- RBF Net
- Perte MAP/MLE
- Transformations de l'espace des paramètres
- Module convolutionnel
- Apprentissage basé sur le gradient
- Énergie pour l'inférence
- Objectif de l'apprentissage
- ACP, NLL
- Modèles de variables latentes
- LVM probabiliste
- Fonction de perte
- Reconnaissance de l'écriture manuscrite
Pré requis
Go ou des connaissances de base en apprentissage automatique. Programming compétences dans n'importe quel langage (idéalement Python/R).
Nos clients témoignent (7)
La structure des premiers principes aux études de cas, jusqu'à l'application.
Margaret Webb - Department of Jobs, Regions, and Precincts
Formation - Introduction to Deep Learning
Traduction automatique
The deep knowledge of the trainer about the topic.
Sebastian Gorg
Formation - Introduction to Deep Learning
Traduction automatique
I think that if training would be done in polish it would allow the trainer to share his knowledge more efficient.
Radek
Formation - Introduction to Deep Learning
Traduction automatique
Exercises after each topic were really helpful, despite there were too complicated at the end. In general, the presented material was very interesting and involving! Exercises with image recognition were great.
Dolby Poland Sp. z o.o.
Formation - Introduction to Deep Learning
Traduction automatique
Topic. Very interesting!.
Piotr
Formation - Introduction to Deep Learning
Traduction automatique
Trainers theoretical knowledge and willingness to solve the problems with the participants after the training.
Grzegorz Mianowski
Formation - Introduction to Deep Learning
The topic is very interesting.
Wojciech Baranowski
Formation - Introduction to Deep Learning
Traduction automatique