Plan du cours
Introduction à l'apprentissage appliqué Machine Learning
- Apprentissage statistique vs. apprentissage automatique
- Itération et évaluation
- Compromis biais-variance
Machine Learning avec Scala
- Choix des bibliothèques
- Outils complémentaires
Régression
- Régression linéaire
- Généralisations et non-linéarité
- Exercices
Classification
- Rappel sur la classification bayésienne
- Bayes naïf
- Régression logistique
- K-Proches voisins
- Exercices
Validation croisée et rééchantillonnage
- Approches de validation croisée
- Bootstrap
- Exercices
Apprentissage non supervisé
- K-means clustering
- Exemples d'apprentissage non supervisé
- Défis de l'apprentissage non supervisé et au-delà des K-moyennes
Pré requis
Connaissance du langage de programmation Java/Scala. Une connaissance de base des statistiques et de l'algèbre linéaire est recommandée.
Nos clients témoignent (2)
l'écosystème ML comprend non seulement MLFlow mais aussi Optuna, hyperops, docker et docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Formation - MLflow
Traduction automatique
J'ai apprécié de participer à la formation Kubeflow, qui s'est déroulée en ligne. Cette formation m'a permis de consolider mes connaissances sur les services AWS, K8s et tous les outils DevOps associés à Kubeflow, qui sont les bases nécessaires pour aborder correctement le sujet. Je tiens à remercier Malawski Marcin pour sa patience et son professionnalisme dans la formation et ses conseils sur les meilleures pratiques. Malawskiaborde le sujet sous différents angles, avec divers outils de déploiement Ansible, EKS kubectl, Terraform. Maintenant, je suis définitivement convaincu que je m'oriente vers le bon domaine d'application.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Formation - Kubeflow
Traduction automatique