Cursusaanbod
Inleiding tot toegepast Machine Learning
- Statistisch leren versus machinaal leren
- Iteratie en evaluatie
- Afweging van bias en variantie
Machine Learning met Scala
- Keuze uit bibliotheken
- Extra hulpmiddelen
Regressie
- Lineaire regressie
- Generalisaties en niet-lineariteit
- Opdrachten
Classificatie
- Bayesiaanse opfrisser
- Naïeve Bayes
- Logistieke regressie
- K-dichtstbijzijnde buren
- Opdrachten
Kruisvalidatie en herbemonstering
- Kruisvalidatiebenaderingen
- Bootstrap
- Opdrachten
Ongecontroleerd leren
- K-betekent clustering
- Voorbeelden
- Uitdagingen van leren zonder toezicht en verder dan K-middelen
Vereisten
Kennis van Java/Scala programmeertaal. Basiskennis van statistiek en lineaire algebra wordt aanbevolen.
Testimonials (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Cursus - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.